博客
关于我
18级大数据专家,跟大家漫谈大数据平台架构,你能学到多少?上篇(2)
阅读量:798 次
发布时间:2023-04-17

本文共 706 字,大约阅读时间需要 2 分钟。

大数据平台是企业数据处理和决策的核心枢纽,涵盖了从数据采集、存储到处理和分析的全流程。以下是大数据平台的主要组成部分及相关技术解析。

一、大数据平台组成

大数据平台主要包括数据来源、数据处理、数据存储和数据输出四大模块。

1. 数据来源

数据是大数据平台的原材料,主要来源包括:

  • 关系数据库:通过Sqoop等工具批量导入结构化数据。
  • 日志数据:Flume是一款常用的日志采集工具,可实时采集应用程序日志。
  • 前端埋点:通过手工埋点、自动化埋点等方式采集用户行为数据。

2. 数据处理

数据处理是大数据平台的核心功能,主要分为离线计算和实时计算两种模式。

  • 离线计算:采用MapReduce、Hive等技术处理大量静态数据。
  • 实时计算:使用Storm、SparkStreaming等流式处理引擎,实现毫秒级数据处理。

3. 数据输出

处理完成的数据需要输出到HDFS存储系统,同时通过数据库提供决策支持数据。这些数据不仅用于用户查询,还需供运营决策层参考。

二、技术工具解析

  • Sqoop:用于关系数据库数据的批量导入。
  • Flume:开源日志采集工具,支持多种数据输出插件。
  • 埋点技术:分为手工埋点(SDK采集)、自动化埋点(无埋点全量采集)和可视化埋点(灵活配置)。
  • 爬虫系统:用于外部数据采集,如行业数据支撑。

三、注意事项

  • 数据量管理:自动化埋点需谨慎使用,以避免流量浪费。
  • 工具选择:根据具体需求选择合适的处理工具,平衡性能与成本。
  • 数据安全:在数据采集和处理过程中需注意数据隐私保护。

四、学习资源

文章内容仅为技术说明,建议关注相关技术文档和开源项目以获取更详细信息。欢迎加入技术交流群,参与技术讨论与学习。

转载地址:http://xtgfk.baihongyu.com/

你可能感兴趣的文章
mysql 创建表,不能包含关键字values 以及 表id自增问题
查看>>
mysql 删除日志文件详解
查看>>
mysql 判断表字段是否存在,然后修改
查看>>
MySQL 到底能不能放到 Docker 里跑?
查看>>
mysql 前缀索引 命令_11 | Mysql怎么给字符串字段加索引?
查看>>
mysql 协议的退出命令包及解析
查看>>
mysql 取表中分组之后最新一条数据 分组最新数据 分组取最新数据 分组数据 获取每个分类的最新数据
查看>>
mysql 四种存储引擎
查看>>
MySQL 基础模块的面试题总结
查看>>
MySQL 备份 Xtrabackup
查看>>
mysql 多个表关联查询查询时间长的问题
查看>>
mySQL 多个表求多个count
查看>>
mysql 多字段删除重复数据,保留最小id数据
查看>>
MySQL 多表联合查询:UNION 和 JOIN 分析
查看>>
MySQL 大数据量快速插入方法和语句优化
查看>>
mysql 如何给SQL添加索引
查看>>
mysql 字段区分大小写
查看>>
mysql 字段合并问题(group_concat)
查看>>
mysql 字段类型类型
查看>>
MySQL 字符串截取函数,字段截取,字符串截取
查看>>